230 research outputs found

    Fermat Principle in Finsler Spacetimes

    Full text link
    It is shown that, on a manifold with a Finsler metric of Lorentzian signature, the lightlike geodesics satisfy the following variational principle. Among all lightlike curves from a point (emission event) to a timelike curve (worldline of receiver), the lightlike geodesics make the arrival time stationary. Here ``arrival time'' refers to a parametrization of the timelike curve. This variational principle can be applied (i) to the vacuum light rays in an alternative spacetime theory, based on Finsler geometry, and (ii) to light rays in an anisotropic non-dispersive medium with a general-relativistic spacetime as background.Comment: 18 pages, submitted to Gen. Rel. Gra

    A comparison of approximate gravitational lens equations and a proposal for an improved new one

    Full text link
    Keeping the exact general relativistic treatment of light bending as a reference, we compare the accuracy of commonly used approximate lens equations. We conclude that the best approximate lens equation is the Ohanian lens equation, for which we present a new expression in terms of distances between observer, lens and source planes. We also examine a realistic gravitational lensing case, showing that the precision of the Ohanian lens equation might be required for a reliable treatment of gravitational lensing and a correct extraction of the full information about gravitational physics.Comment: 11 pages, 6 figures, to appear on Physical Review

    Study of errors in strong gravitational lensing

    Full text link
    We examine the accuracy of strong gravitational lensing determinations of the mass of galaxy clusters by comparing the conventional approach with the numerical integration of the fully relativistic null geodesic equations in the case of weak gravitational perturbations on Robertson-Walker metrics. In particular, we study spherically-symmetric, three-dimensional singular isothermal sphere models and the three-dimensional matter distribution of Navarro et al. (1997), which are both commonly used in gravitational lensing studies. In both cases we study two different methods for mass-density truncation along the line of sight: hard truncation and conventional (no truncation). We find that the relative error introduced in the total mass by the thin lens approximation alone is less than 0.3% in the singular isothermal sphere model, and less than 2% in the model of Navarro et al. (1997). The removal of hard truncation introduces an additional error of the same order of magnitude in the best case, and up to an order of magnitude larger in the worst case studied. Our results ensure that the future generation of precision cosmology experiments based on lensing studies will not require the removal of the thin-lens assumption, but they may require a careful handling of truncation.Comment: accepted to Ap

    Kerr black hole lensing for generic observers in the strong deflection limit

    Get PDF
    We generalize our previous work on gravitational lensing by a Kerr black hole in the strong deflection limit, removing the restriction to observers on the equatorial plane. Starting from the Schwarzschild solution and adding corrections up to the second order in the black hole spin, we perform a complete analytical study of the lens equation for relativistic images created by photons passing very close to a Kerr black hole. We find out that, to the lowest order, all observables (including shape and shift of the black hole shadow, caustic drift and size, images position and magnification) depend on the projection of the spin on a plane orthogonal to the line of sight. In order to break the degeneracy between the black hole spin and its inclination relative to the observer, it is necessary to push the expansion to higher orders. In terms of future VLBI observations, this implies that very accurate measures are needed to determine these two parameters separately.Comment: 17 pages, 4 figures, one section added, to appear on Physical Review

    Wave propagation in axion electrodynamics

    Full text link
    In this paper, the axion contribution to the electromagnetic wave propagation is studied. First we show how the axion electrodynamics model can be embedded into a premetric formalism of Maxwell electrodynamics. In this formalism, the axion field is not an arbitrary added Chern-Simon term of the Lagrangian, but emerges in a natural way as an irreducible part of a general constitutive tensor.We show that in order to represent the axion contribution to the wave propagation it is necessary to go beyond the geometric approximation, which is usually used in the premetric formalism. We derive a covariant dispersion relation for the axion modified electrodynamics. The wave propagation in this model is studied for an axion field with timelike, spacelike and null derivative covectors. The birefringence effect emerges in all these classes as a signal of Lorentz violation. This effect is however completely different from the ordinary birefringence appearing in classical optics and in premetric electrodynamics. The axion field does not simple double the ordinary light cone structure. In fact, it modifies the global topological structure of light cones surfaces. In CFJ-electrodynamics, such a modification results in violation of causality. In addition, the optical metrics in axion electrodynamics are not pseudo-Riemannian. In fact, for all types of the axion field, they are even non-Finslerian

    On Fermat's principle for causal curves in time oriented Finsler spacetimes

    Full text link
    In this work, a version of Fermat's principle for causal curves with the same energy in time orientable Finsler spacetimes is proved. We calculate the secondvariation of the {\it time arrival functional} along a geodesic in terms of the index form associated with the Finsler spacetime Lagrangian. Then the character of the critical points of the time arrival functional is investigated and a Morse index theorem in the context of Finsler spacetime is presented.Comment: 20 pages, minor corrections, references adde

    A Characterisation of the Weylian Structure of Space-Time by Means of Low Velocity Tests

    Get PDF
    The compatibility axiom in Ehlers, Pirani and Schild's (EPS) constructive axiomatics of the space-time geometry that uses light rays and freely falling particles with high velocity, is replaced by several constructions with low velocity particles only. For that purpose we describe in a space-time with a conformal structure and an arbitrary path structure the radial acceleration, a Coriolis acceleration and the zig-zag construction. Each of these quantities give effects whose requirement to vanish can be taken as alternative version of the compatibility axiom of EPS. The procedural advantage lies in the fact, that one can make null-experiments and that one only needs low velocity particles to test the compatibility axiom. We show in addition that Perlick's standard clock can exist in a Weyl space only.Comment: to appear in Gen.Rel.Gra

    Possible potentials responsible for stable circular relativistic orbits

    Full text link
    Bertrand's theorem in classical mechanics of the central force fields attracts us because of its predictive power. It categorically proves that there can only be two types of forces which can produce stable, circular orbits. In the present article an attempt has been made to generalize Bertrand's theorem to the central force problem of relativistic systems. The stability criterion for potentials which can produce stable, circular orbits in the relativistic central force problem has been deduced and a general solution of it is presented in the article. It is seen that the inverse square law passes the relativistic test but the kind of force required for simple harmonic motion does not. Special relativistic effects do not allow stable, circular orbits in presence of a force which is proportional to the negative of the displacement of the particle from the potential center.Comment: 11 pages, Latex fil

    Vector and Tensor Contributions to the Luminosity Distance

    Full text link
    We compute the vector and tensor contributions to the luminosity distance fluctuations in first order perturbation theory and we expand them in spherical harmonics. This work presents the formalism with a first application to a stochastic background of primordial gravitational waves.Comment: 14 pages, 3 figure
    corecore